
J. Fluid Mech. (1997), vol. 345, pp. 133–164. Printed in the United Kingdom

c© 1997 Cambridge University Press

133
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In the present study, the effects of an isolated stationary spherical particle on the tran-
sition process in a flat-plate boundary layer are examined by a spatial direct numerical
simulation. The full three-dimensional time-dependent incompressible Navier–Stokes
equations are integrated by a time-splitting method and discretized spatially by a
high-order finite difference/spectral method. A virtual boundary technique defining
the no-slip boundary of a sphere is implemented within the Cartesian geometry of
the computational grid.

Two numerical simulations which consider the effects of the sphere on the boundary
layer are presented. The subcritical Reynolds number case reveals the appearance
of hairpin vortices shed into the sphere wake which decay as they are convected
downstream. The initial interaction of the sphere and the boundary layer produces a
three-dimensional isolated disturbance comprising a wave part and a transient part.
The decaying transient part is convected downstream at the local mean velocity, while
the wave part induces a decaying Tollmien–Schlichting wave in the flow field.

In the second case, an increase in the Reynolds number results in a wedge of
incipient turbulent flow downstream of the sphere. The development of the wake of
the sphere is dominated by the appearance of an isolated disturbance which rapidly
breaks down forming a structure resembling a turbulent spot. It is demonstrated that
the transition induced by a sphere in the boundary layer is due to a mechanism
related to bypass transition.

1. Introduction
The effects of particulates on boundary layer transition have received considerable

attention as a bypass mechanism with regard to vehicles moving through a particu-
late environment. Individual particulates affect transition by entering the boundary
layer causing additional fluid motion through shedding of vortices and/or impacting
the surface creating an isolated, three-dimensional roughness element. Experimental
studies by Blackwelder et al. (1992) examined the influence of a moving sphere with
a diameter of roughly one-third of the boundary layer thickness, δ. Their flow vi-
sualization study revealed the production of a turbulent spot by an isolated particle
entering the boundary layer.

The experiments of Hall (1967) investigated the flow field arising from both elevated
and surface-mounted spheres in the boundary layer. In agreement with Mochizuki
(1961) and other roughness element studies, Hall (1967) observed either laminar
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Figure 1. Schematic of the sphere in the boundary layer. The variables indicated are in
non-dimensional form.

shedding of vortices which decayed as they were convected downstream or the
development of a turbulent wedge dependent upon the particle Reynolds number,
Red, and the height of the sphere with respect to the boundary layer thickness,
i.e. k∗/δp. Here, δp is the boundary layer thickness at the particle location and
Red = u∗dd

∗/ν∗, where d∗ is the diameter of the sphere, ν∗ is kinematic viscosity, and, if
k∗ denotes the height of the top of the sphere above the wall, u∗d is the velocity of the
undisturbed boundary layer flow at k∗ (figure 1). Hall (1967) concluded that transition
was induced by ‘direct seeding’ of the turbulent flow in the wedge into the boundary
layer and not by inducing linear instability waves. Hall (1967) also observed that
when the sphere was moved across the boundary layer in the wall normal direction,
turbulent patches developed at Reynolds numbers slightly higher than (Red)crit for
stationary spheres.

More recently, the effects of stationary spherical particles on the boundary layer
were examined in the experiments of Vincent & Petrie (1993). Through flow visu-
alization techniques they investigated the characteristics and structures of the wake
leading to the development of the turbulent wedge for both surface-mounted and
elevated spheres. For spheres mounted on the wall, the flow field was dominated by
the horseshoe and trailing vortex systems observed in previous studies (Mochizuki
1961; Norman 1971; Acarlar & Smith 1987; Klebanoff, Cleveland & Tidstrom 1992).
In cases where a turbulent wedge formed, the trailing vortex system rapidly gave way
to the shedding of hairpin vortices in the near vicinity of the sphere. As the hairpin
vortices were convected downstream, the heads rose upward toward the free stream
while the legs descended toward the plate. In the near-wall region, the legs of the
hairpin vortices broke down and then the boundary layer became turbulent forming
the wedge. The heads of the vortices separated from the legs and developed into
isolated vortex rings residing above the turbulent boundary layer. Upon elevating the
sphere above the plate, the above scenario outlined for the breakdown of the wake
into a turbulent wedge generally did not vary.

In addition to the wake effects outlined above, it has been postulated that surface
roughness or particulates can create spatially localized three-dimensional disturbances.
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In recent numerical and experimental studies focusing on such localized disturbances,
Breuer & Haritonidis (1990), Breuer & Landahl (1990), and Henningson, Lundbladh
& Johansson (1993) observed the algebraic temporal growth of disturbances which
they describe as the ‘lift-up’ mechanism (Landahl 1975). For sufficiently high pertur-
bation amplitudes, Breuer & Landahl (1990) observed that the algebraic growth can
cause the flow to bypass the linear stability route (Tollmien–Schlichting (T-S) waves,
which have exponential growth rates) directly into turbulence. The development of
this type of disturbance is characterized by two parts: a wave portion behaving
according to linear stability theory, and a transient portion which travels at the local
mean velocity. The transient part is associated with the so-called lift-up mechanism
(Landahl 1975) which generates horizontal perturbation velocity by the vertical mo-
tion of fluid particles in the presence of mean shear. Landahl (1980) determined that
the kinetic energy of this type of disturbance grows linearly (or faster) in time as
indicated by linear growth of streamwise perturbation velocity, u′, and/or streamwise
elongation of the disturbance. In the work of Breuer & Haritonidis (1990), it was
observed that at low Reynolds numbers or low perturbation amplitudes this growth
can dampen and in some cases the transient part decays and only the wave part
remains.

In this work, we numerically investigate the mechanisms by which an elevated
stationary sphere can induce transition in the boundary layer. As a precursor to this
problem, the evolution of an isolated disturbance in the boundary layer is simulated
using a spatial numerical model and the results are compared with the temporal
computations of Breuer & Landahl (1990) and Henningson et al. (1993). The pur-
pose of these computations is to provide reference characteristics of the evolutionary
behaviour of isolated disturbances for direct comparison with particle-induced tran-
sition and to determine the minimum mesh resolution needed to accurately capture
the disturbance behaviour.

The computations involving the sphere in the boundary layer reveal that isolated
disturbances are characteristic of particle-induced perturbations, linking transition
caused by particles to three-dimensional disturbances. This result is extracted from
two simulations which capture sub- and supercritical behaviour of the wake of a
sphere in the boundary layer. We also survey the properties of the sphere wake and
compare our numerical results with previous experimental observations.

2. Computational method
The numerical model integrates the full three-dimensional time–dependent incom-

pressible Navier–Stokes equations non-dimensionalized by the boundary layer dis-
placement thickness at the inflow, δ∗o , and free-stream velocity, U∞, by a time splitting
method. The Crank–Nicolson scheme is implemented on the normal diffusion terms
and the Adams–Bashforth method is applied on the remaining terms. The equations
are discretized on a non-staggered grid by fourth-order central finite differences in
the streamwise (x) direction and by the Chebyshev collocation matrix method in
the normal (y) direction. The spanwise (z) direction is assumed to be periodic thus
enabling the use of Fourier expansions. As we consider spatial growth of disturbances
approximating more closely actual laboratory experiments, the inflow and outflow
conditions must be properly imposed. To this end, we employ the buffer domain
technique for the outflow boundary conditions which ensures smooth passage of
disturbance waves out of the computational domain (Streett & Macaraeg 1989; Saiki
et al. 1993). The pressure Poisson equation is solved by the capacitance matrix
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method. Further details of the numerical scheme are given elsewhere (Danabasoglu,
Biringen & Streett 1991; Danabasoglu 1992; Joslin, Streett & Chang 1993; Saiki et al.
1993).

To simulate the boundary of the sphere in the flow within a Cartesian geometry, we
implement a virtual boundary method developed by Goldstein, Handler & Sirovich
(1993, 1995) based on the initial work of Sirovich (1967, 1968). This technique involves
the imposition of a no-slip boundary in a flow through a feedback forcing function
which is added to the momentum equations. The feedback function effectively brings
the fluid velocity to zero at the desired points in the flow which define the no-slip
boundary. This force can be expressed as (Goldstein et al. 1993)

F (xb, t) = α

∫ t

0

U (xb, t)dt+ βU (xb, t). (2.1)

Here, F is the external force imposed at the desired boundary points defined by xb,
and U is the velocity at these surface points. The nature of the expression is such that
the velocity field feeds back into the term forcing U to go to zero. The dimensional
negative constants, α and β, are determined by observing the response of U once
F is applied; α produces the natural oscillation frequency of the response, while β
dampens the oscillation of the response. Thus, for unsteady flow, α must produce a

response with a natural frequency ((1/2π)|α|1/2) greater than the highest frequencies
present in the flow so that F can respond correctly to the changing flow field. Previous
test cases (Saiki & Biringen 1996) involving flow around a stationary cylinder clearly
reveal that the oscillatory behaviour associated with the virtual boundary does not
affect the results by introducing extraneous frequencies. In the test case considering
steady-state flow (low Reynolds number), a stationary bubble was obtained which
did not ‘pulse’ or move at any frequency. For unsteady flow (high Reynolds number
where vortices are shed), there was no other frequency present in the flow apart from
the shedding frequency of the vortices.

The time step for stability in this method depends on α and β as well as the explicit
time integration implemented in the flow solver. For the Adams–Bashforth method,
Goldstein et al. (1993) determined the following expression for the time step:

∆t <
−β − (β2 − 2αkb)

1/2

α
, (2.2)

where kb is a problem-dependent constant of order one.
A detailed analysis demonstrating characteristics of the virtual boundary method

through a series of test cases involving modelling stationary and moving cylinders is
given in Saiki (1995) and Saiki & Biringen (1996) and we will refer to the results
from these studies as related to the discussion in subsequent Sections.

3. Results: isolated three-dimensional disturbance
In this Section, we discuss numerical simulations investigating the development of

an isolated disturbance induced by two pairs of counter-rotating streamwise vortices in
the boundary layer. These results demonstrate the capability of the present flow solver
to successfully capture the evolution of an isolated three-dimensional disturbance with
a spatial computational model and delineate the two-part behaviour of the three-
dimensional disturbance. As will be shown in subsequent Sections, such disturbances
characterize particle-induced perturbations in the boundary layer.
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The inflow conditions introducing the two pairs of streamwise vortices were adapted
from the initial conditions implemented by Breuer & Landahl (1990) in their tem-
poral simulations of the evolution of a high-amplitude isolated disturbance. These
perturbation conditions are applied at the inflow and are expressed as

u′(x = 0, y, z, t) = 0,

v′(x = 0, y, z, t) = (Av/lz)
√

1
2
y3
v (1− 2z2

v )e
(−1/2−y2

v−z2
v ) sin(ωvt),

w′(x = 0, y, z, t) = −(Av/ly)
√

1
2
zv(3y

2
v − 2y4

v )e
(−1/2−y2

v−z2
v ) sin(ωvt).

 (3.1)

In the above set of equations, Av is the amplitude of the vortices, and yv = y/ly and
zv = z/lz, where ly, and lz are the characteristic normal and spanwise scales of the
disturbance. The term sin(ωvt) governs the time evolution and ωv is adjusted in order
to obtain a set of vortices similar in size to those of Breuer & Landahl (1990). These
conditions are imposed over one cycle of the sine term only giving rise to two pairs
of vortices. Once they have formed, the conditions in (3.1) are no longer imposed.

In this computation adopting the higher-amplitude disturbance case of Breuer &
Landahl (1990), the normal and spanwise length scales of the disturbance were defined
as ly = 1.2 and lz = 6, and the amplitude of the vortices was Av = 0.5 resulting in
maximum inflow perturbation amplitudes of vmax = 5.8×10−3 and wmax = 1.86×10−2.
The computations were performed on several computational grids of varying normal
resolution, 241×61×33, 241×71×33, and 241×101×33 in a domain of dimensions
141× 75× 50 units non-dimensionalized by displacement thickness, δ∗. The Reynolds
number specified at the inflow was Reδ∗o = 950, and the vortex pairs were centred
around z = 25.

In accordance with Breuer & Landahl’s (1990) study, the current computations
displayed the development of the transient and wave parts associated with the
three-dimensional disturbance. The initial startup of the streamwise vortices can be
observed in (x, y)-planes of perturbation velocity contours at the centreline of the
streamwise vortices, z = 25 (figures 2a and 3a). The perturbation quantities were
obtained by subtracting the base flow (Blasius solution) from the total solution. At
this point in the computation, the full cycle of introducing the pairs of streamwise
vortices has been completed and the sine term in (3.1) has just been set to zero.
The normal perturbation velocity contours (figure 3a) reveal that the downstream
set of vortices (closest to the outflow) brings low-momentum fluid upward from the
wall at the centreline, z = 25, while the second set of vortices developing upstream
reflects exactly the opposite behaviour. The vertical motion of the fluid induces the
production of horizontal velocity (reflected in the u′ contours, figure 2a) by the lift-up
effect, i.e. fluid is moved vertically while retaining its horizontal momentum.

The two-part evolution of the disturbance as it travels downstream is shown
in similar (x, y)-planes at z = 25 in figures 2(b–d) and 3(b–d). At this spanwise
position the u′ contours are dominated by the higher-amplitude transient structure
appearing as a negative contour region followed by a positive region which develop
in accordance with the vertical motion of the fluid. Since the transient part moves
at the local velocity, the presence of mean shear associated with the boundary layer
causes the structure to tilt and stretch in the streamwise direction. The original form
of the disturbance coupled with the stretching and tilting of the structure leads to
the development of an internal shear layer (figure 2b, c). The time evolution of the
maximum perturbation velocities associated with the transient part reveal that the
amplitude of u′ increases in a linear fashion from t ≈ 6.5 to t ≈ 100.
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Figure 2. Contours of streamwise perturbation velocity in the (x, y)-plane at z = 25: (a) t = 32.7,
(b) t = 85.1, (c) t = 137.44, and (d) t = 189.8. In this and the following figures, negative and positive
quantities are denoted by and , respectively, and the vertical direction is magnified.

The normal perturbation velocity contours presented in figure 3 clearly reveal the
wave part of the disturbance. The contours are similar to those which develop due to
the presence of a Tollmien–Schlichting (T-S) wave. The wave part of the disturbance
travels at the phase speed of the T-S wave, lagging behind the transient part; the
transient part in v′ contours is indicated by the negative region of fluid which moves
ahead of the wave portion (figure 3b, c). At t = 137.44 (figure 3c), a secondary wave
indicated by the splitting of the positive v′ cell appears which, according to Breuer &
Landahl (1990), is associated with a secondary instability.

Recently, Henningson et al. (1993) reproduced the Breuer & Landahl (1990) com-
putations summarized above and did not observe this type of behaviour, i.e. secondary
instability. They attributed this discrepancy to insufficient resolution in the normal
direction in the analysis of Breuer & Landahl (1990). To test their assertion, we
performed several calculations with higher normal resolution, increasing the number
of points within the boundary layer by changing the stretching near the wall and
increasing the number of points in the normal direction. The v′ contours obtained for
the middle resolution case (241×71×33) reveal no development of a secondary wave
(figure 4) confirming that the computations performed by Breuer & Landahl (1990)
were under resolved. Identical results were obtained in the highest-resolution case,
241× 101× 33, demonstrating that the middle resolution results are grid independent
and sufficient for capturing the evolution of the three-dimensional disturbance.
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Figure 3. Contours of normal perturbation velocity in the (x, y)-plane at z = 25: (a) t = 32.7,
(b) t = 85.1, (c) t = 137.44, and (d) t = 189.8.

These computations allowed us to clarify the issue regarding minimum grid resolu-
tion needed to accurately compute the physical behaviour of this type of phenomenon
and to compare results obtained from temporal and spatial mathematical models.
More importantly, the structure associated with the two-part nature of the isolated
disturbance was determined in order to identify such disturbances which arise in the
sphere computations presented in the following Sections.

4. Results: effects of a sphere on boundary layer transition
The subcritical and supercritical behaviour of the wake of a sphere in the bound-

ary layer was examined by simulating two cases distinguished by the displacement
boundary layer Reynolds numbers applied at the inflow boundary, Reδ∗o = 500 and
Reδ∗o = 750 (table 1). This parameter, in conjunction with the non-dimensional down-
stream position of the sphere from the inflow (xc = 31.14) and the height of the top
of the sphere from the wall (k = k∗/δ∗o = 1.3; figure 1), resulted in sphere Reynolds
numbers of Red = 322 and Red = 494 for the subcritical and supercritical cases,
respectively. The sphere was well within the boundary layer at this normal location
and the sphere elevation above the plate placed it in Region II according to the
criteria of Hall (1967). In this height region, Hall (1967) determined that the critical
Red for development of a turbulent wedge was between 450 to 700 and Red in the
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Figure 4. High normal resolution case: 241× 71× 33. Contours of normal perturbation velocity in
the (x, y)-plane at z = 25: (a) t = 32.7, (b) t = 85.1, (c) t = 137.44, and (d) t = 189.8.

Case Reδ∗o Red Reδ∗p (xc, yc, zc) δ∗p Mesh resolution Domain size

Subcritical 500 322 544 (31.14, 0.8, π) 0.395 306× 71× 33 137.36× 75× 2π
Supercritical 750 494 795 (31.14, 0.8, 2π) 0.4058 306× 71× 65 137.36× 75× 4π

Table 1. Computational parameters implemented for the sphere cases

subcritical case falls well below this range, while Red for the supercritical case lies
within 450–750 for supercritical behaviour.

In both computations, the diameter of the sphere was d∗ = 2.297 mm (roughly,
d∗ = 1

3
δp; δp is the dimensional laminar boundary layer thickness at the sphere

position, xc). The sphere was elevated and its bottom was 0.3 non-dimensional units
above the plate. Both computational cases were set up such that the dimensional
diameter of the sphere was equal to the boundary layer displacement thickness at
the inflow, i.e. d∗ = δ∗o . Recall that the displacement thickness of the boundary layer
at the inflow boundary is chosen as the characteristic length non-dimensionalizing
the governing equations, therefore the non-dimensional diameter of the sphere in the
current computations was equal to one.

The selection of the position of the sphere was based upon the parameters im-
plemented in the experimental studies of Blackwelder et al. (1992). In particular, the
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streamwise location of the sphere in the subcritical case corresponded to the location
where the particle struck the plate and then induced a turbulent spot in the median
Reynolds numbers (Rex = 1×105) cases examined by R. Blackwelder & P. Tanaguichi
(personal communication). The height of the sphere above the plate was chosen in
order to obtain the best resolution for defining the sphere with the virtual boundary
method and by requiring that the sphere was within one boundary layer thickness of
the wall. Owing to the imposition of periodicity in the spanwise direction, the simu-
lations model the flow over an infinite array of spheres where the distance between
the spheres was 5.28d∗ and 11.56d∗ for the sub- and supercritical cases, respectively.

The boundary of the sphere was imposed by the forcing term applied on 368
points with feedback coefficients set to α = −500 and β = −4. The virtual bound-
ary method requires point by point enforcement of the forcing term on the grid
points, thus to approximate the shape of the sphere as closely as possible, addi-
tional mesh points in the streamwise direction were clustered in the vicinity of the
sphere. As required by the virtual boundary method, the natural frequency of the

forcing term, (1/2π)|α|1/2 = 3.6, exceeded the maximum frequencies which developed
in both cases. The vortex shedding frequencies of the hairpin vortices were 0.2 and
0.22 in the sub- and supercritical case, respectively and in the incipient turbulent
wedge of the high Reynolds number case, the maximum frequencies measured were
less than one. The body of the sphere was introduced by ‘turning on’ the forcing
term at t = 0 within a Blasius boundary layer. Previous studies (Goldstein et al.
1993; Saiki & Biringen 1996) have demonstrated that this method of introducing the
virtual boundary results in the quick formation of the body such that time-accurate
development of the flow around the body can be obtained. For example, compu-
tations by Saiki & Biringen (1996) of the time-dependent evolution of the wake
downstream of a rotating cylinder revealed excellent agreement with experimental
observations.

4.1. Subcritical case

For this computation, a mesh of 306 × 71 × 33 was defined on a physical domain
of dimensions 137.36 × 75 × 2π. The length of the buffer domain was 62.64 non-
dimensional lengths, comprising 116 grid points. The code utilized the maximum time
step allowable which obeys the Courant and virtual boundary method restrictions and
was set to ∆t = 0.0224. The non-dimensional coordinates of the centre of the sphere
were (xc, yc, zc) = (31.14, .8, π), and the height of top of the sphere was k∗/δp = 0.395.
The sphere Reynolds number was Red = 322 and the Reynolds number based on the
laminar boundary layer displacement thickness at the sphere location was Reδ∗p = 544.

The wake of the sphere in the subcritical case is composed of four physical regions
which develop over a range of streamwise locations downstream of the sphere: (i) the
flow field arising in the immediate vicinity of the sphere consisting of two separation
bubbles, one attached to the wall and the other to the downstream side of the sphere
(0 6 x 6 2.8), (ii) a pair of fixed trailing vortices extending downstream of the sphere
(0 6 x 6 6), (iii) a hairpin vortex shedding region where the hairpins are the strongest
before decaying downstream (6 6 x 6 24), and (iv) the region downstream where the
hairpin vortices dissipate (24 6 x 6 106). Here, we denote x as x = x− xd where xd
is the streamwise location of the downstream edge of the sphere. These regions will
be referred to in the subsequent discussion.
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Figure 6. Subcritical case: contours of streamwise vorticity in (z, y)-planes at x = 3.5. In this and the
following figure, the negative and positive regions are denoted by and , respectively,
and the boundaries of the sphere are marked by . The flow direction is into the page.

4.1.1. Trailing and hairpin vortices

The flow field settles into a quasi-steady state consisting of hairpin vortices shed into
the wake. This is clearly demonstrated in figure 5 where a side view of instantaneous
streamwise vorticity isosurfaces demarcate the legs of six hairpin vortices in the near-
sphere region spanning 0 6 x 6 27. The hairpin heads are absent in isosurfaces of
streamwise vorticity, because they consist mainly of spanwise vorticity; however, the
rise of the heads of the vortices towards the free stream is clearly indicated by the
vortex legs. The shed vortices ultimately dissipate as they are convected downstream
and the flow returns to its laminar boundary layer state. This behaviour is in good
agreement with experimental results; for subcritical Reynolds numbers Mochizuki
(1961), Hall (1967), and Vincent & Petrie (1993) observed laminar shedding of
vortices.

The motion of the pair of trailing streamwise vortices as revealed in cross-planes
of streamwise vorticity contours at x = 3.5 (figure 6) moves low-momentum fluid
away from the wall at the centreline of the wake, z = π, which interacts with higher-
speed fluid above and transfers high-speed fluid toward the wall at the outer bounds
of the vortices. Further downstream, this self-induced motion causes the vortices
to approach each other and to rise slightly towards the free stream. At about six
diameters downstream of the sphere, the hairpin vortex shedding commences.

The hairpin vortex structure and development are in accordance with observations
obtained by experimental studies of hairpin vortices (Acarlar & Smith 1987). Cross-
planes of streamwise vorticity at x = 6.8 and 8.1 (figure 7) show that the motion
of the legs exhibit the same direction of rotation as the trailing vortices described
above, thus inducing the same fluid motion as the trailing vortices. The self-induced
motion of the vortices results in the head of the vortex lifting upward toward the
free stream allowing higher velocities to carry the head downstream faster than the
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Figure 7. Subcritical case: contours of streamwise vorticity in (z, y)-planes at (a) x = 6.8, and
(b) x = 8.1.

legs. This action leads to a stretching of the legs as the hairpin vortices are convected
downstream (figure 5). The legs of the hairpin vortex initially form an angle of 25◦

with the wall which is slightly lower than the angle measurement of 30◦–35◦ observed
by experiments for elevated spheres (Vincent & Petrie 1993); further downstream as
the legs are stretched, the angle decreases. The legs extend towards the plate to a level
near the midpoint of the sphere (y ≈ 0.734), but they do not descend any further
towards the wall. The maximum height to which the hairpin vortices rise is y ≈ 2.3 or
y/δp ≈ 0.7 which is well within the boundary layer. This behaviour is in agreement
with Vincent & Petrie (1993) who observed that the hairpin vortices did not lift up
into the free stream for Reynolds numbers Red 6 480–500. Figures 5 and 7(b) also
reveal that the upstream portion of the hairpin vortex legs appears to be intertwined
with the legs of the newer vortex similar to the flow visualization results of Acarlar
& Smith (1987).

Evidence of the hairpin eddy structure can be identified by observing time traces
at various y and z locations of streamwise velocity in the hairpin vortex region.
Experimental studies have observed that the configuration of a hairpin eddy is
associated with a phase reversal in the time signal with increasing normal direction
above the hairpin vortex and outward from the centreline (Klebanoff, Cleveland &
Tidstrom 1962; Klebanoff et al. 1992). This behaviour in the normal direction is
demonstrated in figure 8(a, b) where distributions over four vortex shedding periods
at x = 10.6 and z = π for y = 2.8 and 1.3 are presented. The height of the vortex
which passes through this streamwise location is y = 1.86 and the normal locations
of the time traces shown in figure 8(a, b) span this height. The maxima in the time
distribution above the vortex (figure 8a) correspond to the passage of each hairpin
head; the vortical motion of the head creates an increase in streamwise velocity
above it and a deficit below it. Accordingly, the time signal at y = 1.3 (figure 8b)
reveals minima associated with the passage of the heads. The minima appearing in
the distribution above the vortices is associated with the motion of the hairpin legs
moving low-momentum fluid up toward the free stream. The phase change between
time signals recorded at the centreline and spanwise positions at the outer extremities
of the hairpin vortex is demonstrated by a comparison of figures 8(b) and 8(c). The
distributions off the centreline display minima and maxima due to the vortical motion
of the hairpin vortex moving high-momentum fluid from the free stream toward the
wall at the outer spanwise boundaries of the structure. The phase reversals in the
spanwise direction begin to develop within one diameter of the sphere measured from
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Figure 8. Subcritical case: time evolution of streamwise velocity over four vortex shedding periods
at x = 10.6 and (a) y = 2.83, z = π, (b) y = 1.3, z = π, and (c) y = 1.3, z = 2.55.

z = π in a manner similar to time signals measured in the wake of a hemisphere in
the boundary layer (Klebanoff et al. 1992).

4.1.2. Boundary layer characteristics

To assess the effects of the sphere wake on the characteristics of a laminar boundary

layer, the non-dimensional displacement thickness (δ
∗

= δ∗/δ∗o), momentum thickness
(θ), and skin friction coefficient (cf) were computed and compared with standard val-
ues obtained for the Blasius boundary layer solution. These quantities are determined
by the following equations:

δ
∗

=

∫ ymax

0

(
1− um

U∞

)
dy, (4.1)

θ =

∫ ymax

0

um

U∞

(
1− um

U∞

)
dy, (4.2)

and

cf =
2

Reδ∗o

(
∂um

∂y

)
y=0

, (4.3)

using mean velocity profiles (um) computed at the centreline, z = π. The streamwise
mean velocity, um, is defined as

um(x, y, z) =
1

Nt

Nt∑
n=1

u(x, y, z, n∆t), (4.4)
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Figure 9. Subcritical case: streamwise distribution of (a) non-dimensional boundary layer displace-

ment thickness, δ
∗
, (b) momentum thickness, θ, and (c) skin friction coefficient, cf , downstream of

the sphere. , current solution; and , laminar boundary layer solution.

where ∆t is the time step and Nt is the number of time steps. We focus on quantities at
the centreline, because the deviation from the laminar boundary layer is the greatest
due to the presence of the sphere at that location.

Figure 9 presents the streamwise distribution of δ
∗
, θ, and cf downstream of the

sphere. In the vicinity of the sphere, there is an increase in displacement thickness and
a decrease in momentum thickness due to the effects of the body (figure 9a, b). This
trend continues throughout the region where the separation bubble develops, thus

leading to an increase in the shape factor, H = δ
∗
/θ. The skin friction in this region

attains a large negative value characteristic of separated flow; the curve crosses zero
at the end of the wall separation bubble at x ≈ 2.8 (figure 9c). Beyond the separated

region, δ
∗

and θ begin to decrease and increase respectively, for a short distance.

Further downstream δ
∗

approaches a constant value of 1.6, indicating an increase
in boundary layer displacement thickness over the laminar value of 1.35 due to the
wake of the sphere. The momentum thickness remains below the laminar boundary
layer value downstream of the separated region, and this behaviour, coupled with the

higher δ
∗
, results in a larger shape factor, H = 2.8; the value of H for the Blasius

boundary layer is ≈ 2.6. The skin friction coefficient remains lower than the Blasius
value, indicating that the velocity profiles are less full (δu/δy at the wall decreases).

4.1.3. Velocity profiles

We further characterized the wake of the sphere by examining normal and spanwise
profiles of streamwise mean and root-mean-square velocities at z = π and various x
locations. The streamwise component of root-mean-square velocity is defined as

urms(x, y, z) =

(
1

NT

Nt∑
n=1

(u(x, y, z, n∆t)− um(x, y, z))

)1/2

, (4.5)
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Figure 11. Subcritical case: normal profiles of streamwise mean velocity at every other streamwise
location downstream of the sphere at z = π. Each profile is offset by ∆u = 0.02.

where um is the streamwise mean velocity as defined in (4.4). Each normal mean
profile is compared with the Blasius solution and the locations of the sphere in
the computation are denoted by dashed lines. The presence of a separation bubble
attached to the wall in the near vicinity of the sphere is reflected in the mean profile
at x = 1 by a small region of reverse flow which extends from the wall to y ≈ 1
(figure 10a). A slight negative bump in the profile near y ≈ 1.25 indicates the presence
of the separation bubble attached to the sphere. The profiles are highly inflectional
at the top of the sphere due to the formation of a high-shear layer (figure 10b, c).
This high-shear layer is further evident in figure 11 where streamwise mean velocity
profiles at every other x location downstream of the sphere at z = π are presented.
In this figure, the profiles are offset from each other by ∆u = 0.02 in order to observe
the shear layer moving away from the wall in association with the rising motion of
the hairpin vortices. This behaviour is also reflected in the mean velocity profiles in
figure 10b, c as the inflection points of the profiles move away from the wall and the
deviation of the distributions from the Blasius profile is confined to higher normal



Simulation of boundary layer transition: effects of a spherical particle 147

4

2

0

4

2

0 0.005 0.010 0.015 0.020

0.002 0.004 0.006 0.008 0 0.02 0.04 0.06 0.08

4

2

4

2

0 1 2 3 4(¬10–4)
urmsurms

y

y

(a) (b)

(c) (d )

Figure 12. Subcritical case: normal profiles of streamwise root-mean-square velocity at z = π. (a)
x = 1, (b) x = 9, (c) x = 21.44, and (d) x = 102.5; , streamwise r.m.s. velocity; ,
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locations above the wall. The effects of the sphere have not completely diminished by
the end of the computational domain and there is still some difference between the
mean computational profiles and the Blasius profiles (figure 10d).

The most striking characteristic of the root-mean-square profiles presented in
figure 12 is the appearance of distinct maxima near the top of the sphere which
correspond to the inflection point of the mean profiles. The normal position of the
maxima migrates away from the wall in accordance with the mean profile inflection
point (figure 12b, c). Experimental studies have shown the appearance of this high-
intensity peak related to the heads of the hairpin vortices in similar profiles (Acarlar
& Smith 1987; Vincent & Petrie 1993; Klebanoff et al. 1992). Further downstream
low-level fluctuations of the profiles due to the wake of the sphere reveal fuller r.m.s.
profiles with the maxima developing well above the top of the sphere (figure 12d).

Note that the appearance of the inflection points in the mean profiles does not act
as a precursor to turbulence for the subcritical sphere Reynolds number case. While
the perturbations are greatest at or above the inflection points they do not amplify,
but rather attenuate further downstream. As stated by Morkovin (1985), the presence
of the sphere allows the development of inflectional profiles without appearing to
enhance the linear instability of the flow. This is in part due to the time and length
mismatch between the disturbances introduced into the flow field by the hairpin
vortices and typical Tollmien–Schlichting waves associated with linear instability. The
spatial wavelengths of the disturbances induced by the hairpins are O(δ) whereas T-S
disturbances have much longer wavelengths O(10δ).

Figure 13 examines spanwise distributions of streamwise mean velocity at several
normal locations, y = 2.82, 2.3, 1.86, 1.3 (at the top of the sphere), 0.734 (near the
y centreline of the sphere), and 0.27 (at the bottom of the sphere) at x = 1, x = 9,
x = 21.44, and x = 102.5. The most obvious characteristic of the mean profiles is the
development of a deficit at z = π near the top of the sphere due to the motion of
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Figure 13. Subcritical case: spanwise profiles of streamwise mean velocity at (a) x = 1, (b) x = 9,
(c) x = 21.44, and (d) x = 102.5. The normal locations are denoted by , y = 2.83; · · · ,
y = 2.3; , y = 1.86; · , y = 1.3; · · · · · · , y = 0.734; and ◦ ◦ ◦, y = 0.27. The spanwise
boundary of the sphere is denoted by .

the trailing streamwise vortices and the hairpin vortices which carry low-momentum
fluid away from the wall towards the free stream (figure 13).

4.1.4. Time evolution and fourier analysis

To investigate the prominent frequencies/wavenumbers in the flow field, the stream-
wise velocity field was Fourier transformed in time and in the spanwise direction
forming the Fourier amplitudes in the frequency/wavenumber space. Here, we de-
note these modes as (f, kz) pairs, where f is non-dimensional frequency (ω = 2πf)
and kz is spanwise wavenumber. The streamwise variation of the highest-amplitude
modes downstream of the sphere are presented in figure 14. The lowest spanwise
modes, (0, 1) and (0, 2), have the highest amplitude throughout the domain with a
slight decay with increasing x. These modes represent the presence of the streamwise
trailing vortices in the near vicinity of the sphere and the wake further downstream.
The amplitude of the (0.2, 0) mode frequency exhibits a large increase throughout
the trailing and hairpin vortex region followed by a dramatic decrease downstream.
This mode corresponds to the shedding frequency of the hairpin vortices and, ac-
cordingly, Fourier spectra of the time signals in this area reveal a dominant peak
at a Strouhal frequency of St = f∗d∗/U∗∞ = 0.2. This result is in good agreement
with results extrapolated from the experimental measurements of Vincent & Petrie
(1993) for a surface-mounted sphere (St = 0.19 at Red = 322). A second dominant
frequency, (0.017, 0), also appears in figure 14 which exhibits similar behaviour to the
(0.2, 0) mode near the sphere. However, the lower-frequency mode remains at higher
amplitudes than the vortex shedding mode further downstream.

The presence of a second dominant frequency further revealed itself in time series
and Fourier analysis of the streamwise velocity. Near the end of the hairpin vortex
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Figure 15. Subcritical case: (a) time evolution of streamwise velocity over twenty-four vortex
shedding periods and (b) Fourier spectrum of streamwise velocity vs. Strouhal number at x = 21.44,
y = 1.3, and z = π.

shedding region (x = 21.44), the second signal manifests itself as a modulation
of the shedding signal and as a second spike in the Fourier spectrum (figure 15).
The frequency of this signal, fl = 0.017 (or ωl = 0.107), is not a subharmonic
of the shedding frequency, but is less by a factor of ≈ 11.7. Traces of streamwise
velocity at points further downstream (x = 48.45) reveal that the low-frequency signal
overshadows the vortex shedding signal and then dominates the flow field completely
(figure 16). Moreover, the amplitude of the wave attenuates exponentially in time.

One interesting characteristic of this low-frequency signal is that it appears to be
related to the most unstable T-S wave predicted by linear stability theory for the given
Reynolds number range of the computational domain. This was confirmed by consul-
tating the stability chart obtained from solutions of the Orr–Sommerfeld equation for
the boundary layer and correlating the properly scaled frequency and Reynolds num-
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Figure 17. Neutral curve (Jordinson 1970) predicted by linear stability theory (solution of the
Orr–Sommerfeld equation) for boundary layers; frequency non-dimensionalized by δ∗ (ω) vs.
Reynolds number (Reδ∗ ). The region spanned in the subcritical case from the position of the sphere
to the end of the domain with respect to the low frequency is denoted by the solid line. The position
of the sphere is indicated by ∗.

ber based upon local displacement thickness at the sphere position, Reδ∗p = 544. For
reference, the neutral stability curve for boundary layers as determined by Jordinson
(1970) is reproduced in figure 17. In this figure, the region of interest for the current
study is denoted by a line drawn from the Reynolds number at the sphere position,
Reδ∗p = 544, to the Reynolds number at the end of the computational domain, Reδ∗ =
673, for the low frequency, ωl = 0.107. According to figure 17, a wave at this frequency
experiences growth in the streamwise direction over the majority of the domain; fur-
ther downstream the wave exhibits a decay in amplitude. This behaviour is reflected
in the streamwise distribution of the low-frequency wave amplitude (with some mod-
ulation due to the wake of the sphere) shown in figure 14. The second horizontal axis
included in figure 14 shows the direct correspondence of the x-coordinate with the lo-
cal Reynolds number for comparison with figure 17. The stability chart further reveals
that ωl falls near the frequency of the most unstable wave for the Reynolds number
at the location of the sphere, Reδ∗p = 544 (marked by the asterisk in figure 17). Thus,
the low-frequency signal is associated with the appearance of a Tollmien–Schlichting
wave, but its origin and the reasons for its time decay require further discussion.
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Figure 18. Subcritical case: contours of the disturbance at t = 2.24. (a) Streamwise perturbation
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direction is magnified.

The time decay suggests that the source inducing the low-frequency wave is no
longer present and is associated with early events of the simulation. This can be related
to the initial interaction of the sphere with the boundary layer creating an isolated
three-dimensional disturbance which convects downstream ahead of the developing
trailing streamwise and hairpin vortices. As noted in the introduction, previous studies
have observed that an isolated three-dimensional disturbance in the boundary layer
is characterized by two parts: a transient part and a wave part whose behaviour is
governed by the lift-up mechanism and by linear stability theory, respectively.

Expanding this idea, contours of streamwise and normal perturbation velocities in
the (x, y)-planes at z = π and z = 2π detailing the initiation and evolution of the
disturbance are presented in figures 18–20. The perturbation quantities (u′, v′, w′) are
defined as

U ′(u′, v′, w′) = U (u, v, w)−Um(um, vm, wm), (4.6)

where Um is the mean velocity as defined in (4.4). The mean velocities were computed
over 22 periods of the hairpin vortex shedding once the computation reached a
quasi-steady state consisting of the hairpin vortices and the final state of the wake.
The mean streamwise velocity field reflects the velocity deficit associated with the
wake which influences the flow field at distances far from the sphere. Therefore in our
analysis, the streamwise perturbation velocities computed by (4.6) are influenced by
the wake deficit downstream and significant disturbances are represented by extrema
in the u′ contour plots.

In the initial stages of the computation, the total normal velocity contours (figure
18b) are similar to the flow field which arises around a sphere in uniform flow at
low Reynolds numbers. The negative velocity region appearing downstream near the
top of the sphere brings high-speed fluid downward forming a region of higher-
momentum fluid. This behaviour is revealed in streamwise perturbation velocity
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Figure 19. Subcritical case: contours of the disturbance at t = 104.35. (a) Streamwise and
(b) normal perturbation velocity contours in the (x, y)-plane at z = π.

contours, u′, where a maximum appears in accordance with the negative-velocity
region (figure 18a). The origin of the disturbance is associated with the downward
motion of fluid, which maintains its horizontal momentum in the presence of mean
shear.

The characteristics of the development of the disturbance are similar to those
observed in the current study (§ 3) and others (Breuer & Haritonidis 1990; Henningson
et al. 1993) for an isolated three-dimensional disturbance induced by two pairs of
streamwise vortices. Contours of streamwise and normal perturbation velocities in
the (x, y)-planes at z = π and z = 2π detail the two-part structure of the disturbance
at a later time in the computation (figures 19 and 20). The transient portion indicated
by the largest maximum in the streamwise perturbation velocity contours at z = π
(figure 19a) is convected downstream at the local velocity of the flow field. The
amplitudes associated with the transient part decay; however, the streamwise length
of the disturbance increases. The second maximum appearing in the u′ contours
(figure 19a) corresponds to the wave part of the disturbance developing upstream
of the transient part. The wave part can be observed in a clearer manner in the
(x, y)-plane away from the centreline at z = 2π (figure 20a) where the u′ contours
reveal a distribution similar to those obtained for a T-S wave.

The dominance of the wave part of the disturbance is apparent in the side view
of the v′ contours at both the centreline, z = π (figure 19b), and the edge of the
domain, z = 2π (figure 20b). The only indication of the transient part in the v′

contours of these figures is the weak negative contours moving out ahead of the
wave part. The wave portion travels at a speed estimated as ≈ 0.4, which is slower
than the transient portion. Note that the phase speed of the most unstable T-S wave
associated with the low frequency (ωl = 0.107) is 0.39 (according to linear stability
theory) in good agreement with the speed of the wave part of the disturbance. Thus,
the dispersive part of the disturbance is the source of the decaying low-frequency
signal dominating the flow field away from the sphere. Further downstream, the
transient portion convects away ahead of the wave part, and in the quasi-steady state
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Figure 20. As figure 19 but at z = 2π.

of the computation there is no evidence of the disturbance as both portions convect
out of the computational domain. Only closely spaced contours in the near vicinity
of the sphere remain, indicating the continuous shedding of the hairpin vortices.

The results obtained in this computation demonstrate that due to the interaction
of the sphere with the boundary layer, an isolated disturbance is induced which
behaves in a manner similar to the disturbances investigated in § 3 and by Breuer
& Haritonidis (1990), Breuer & Landahl (1990), and Henningson et al. (1993). The
transient portion leaves the computational domain with the wave portion of the
disturbance trailing behind inducing a decaying low-frequency T-S wave in the flow
field. There is no sudden transition to turbulence, rather the disturbance propagates
away leaving behind the Tollmien-Schlichting wave which, despite the presence of
inflectional velocity profiles due to the high-shear layer in the wake of the sphere,
does not become unstable.

4.2. Supercritical case

For this computation, the location and the dimensions of the sphere were as in the
subcritical case, but the Reynolds number was increased to a supercritical value. This
was achieved by increasing the Reynolds number at the inflow resulting in a sphere
Reynolds number of Red = 494 and a boundary-layer Reynolds number at the sphere
location of Reδ∗p = 795. The height of the top of the sphere from the wall with respect
to δp was k∗/δp = 0.4058. The mesh resolution in the computational domain was
306× 71× 65 on a domain size of 137.36× 75× 4π (table 1). Although the number of
points in the spanwise direction was larger than that applied in the subcritical case,
the spanwise length of the domain was also increased, and the spanwise resolution
did not change between the two cases. The length and resolution of the buffer domain
also remained the same.

This case resulted in the development of complex fluid motion akin to turbulence.
The available machine resolution enabled the simulation of an incipient turbulent
state characterized by the formation of a turbulent wedge, but was insufficient for
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the simulation of a statistically steady fully developed turbulent flow. Consequently,
this high-Reynolds-number simulation captured only the salient characteristics of
transitional behaviour and early turbulence in this complex flow field.

The wake downstream of the sphere in this case can be categorized into several
regions where particular events occur: (i) the near-flow region of the sphere 0 6 x 6
2.35, (ii) the appearance of a pair of fixed trailing vortices over (0 6 x 6 3.026), (iii)
a short region spanning approximately (3.026 6 x 6 15) where distinctive hairpin
vortices are shed and then convected downstream as they break down to become part
of (iv) a wedge of complex flow. The development of the flow field from the initial
stages to the full wedge involves the formation of a three-dimensional disturbance
which breaks down into a structure similar to a turbulent spot.

4.2.1. Trailing and hairpin vortices

Figure 21 presents instantaneous constant-streamwise-vorticity surfaces over 0 6
x 6 28 at t = 215.4. The streamwise extent of the trailing vortices downstream
of the sphere is much shorter and the shedding of the hairpin vortices begins at
streamwise locations closer to the sphere in this case. At this particular snapshot in
time, four distinct vortices appear immediately downstream of the trailing vortices
which resemble the vortices shed in the subcritical case (figure 5). These hairpin
vortices are stretched as they are convected downstream and their heads are lifted
up into the free stream to a maximum height of y ≈ 2.6. In comparison with the
subcritical case, the hairpin heads in the supercritical case reach greater distances
above the plate at streamwise locations closer to the sphere, e.g. at x = 10.6 the
heights of the hairpins are y ≈ 2 and y ≈ 2.6 in the sub- and supercritical cases,
respectively. However, the angle of inclination of the legs with respect to the wall is
around 25◦, similar to the angle observed in the supercritical case. Downstream of
these four vortices, the previously shed hairpin vortices become more irregular as the
legs move toward the wall and their heads move upward higher into the free stream.
This behaviour of the hairpin vortices is in accordance with observations obtained by
Vincent & Petrie (1993).

4.2.2. Time evolution and Fourier analysis

The time signals extracted from this computation are not as clear as in the
subcritical case where the dominant frequencies present in the flow field correspond
to the frequency of the shedding of hairpin vortices and the decaying influence of the
wave part of the isolated disturbance. In the supercritical case, the complexity of the
wake is revealed by the irregularity of the time signals even in the region where the
hairpin vortices are shed. This behaviour is evident in time traces recorded at x = 10.6,
z = 2π, and y = 1.86 (at the top height of the hairpin vortices at this streamwise
location) presented in figure 22(a). The time signal is relatively uniform revealing a
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Figure 22. Supercritical case: (a) time evolution of streamwise velocity over ten vortex shedding
periods and (b) Fourier spectrum of streamwise velocity vs. Strouhal number at x = 10.6, y = 1.86,
and z = 2π.

spike in the Fourier spectrum at St = 0.22 associated with the hairpin vortex shedding.
The Strouhal frequency (St = 0.22) obtained in this case is in good agreement with
the experimental results of Vincent & Petrie (1993) (St ≈ 0.23 at Red = 494). The
time signals in the hairpin shedding region also exhibit phase shifts between various
normal and spanwise measurement positions (not shown) in accordance with the
hairpin vortex structure (§ 4.1.1). There is no evidence of a low-frequency component
in these time traces (or in others at different locations) associated with a T-S wave,
because the wave portion of the disturbance is weaker than the transient part which
induces the rapid breakdown of the isolated disturbance into a turbulent-like spot
(§ 4.2.3).

4.2.3. Three-dimensional isolated disturbance

In a manner similar to the low-Reynolds-number case, a three-dimensional isolated
disturbance induced by the interaction of the sphere with the boundary layer develops.
A flow field arises in the early stages of the computation which closely matches the
initial stages of the subcritical case (figure 18). Instantaneous streamwise velocity
contours reveal the time evolution of the planform of this structure in (x, z)-planes
at y = 1.3 (figure 23). The spanwise direction has been magnified in these figures in
order to obtain a more detailed view of the structure; under normal conditions, it is
much thinner and the streamwise stretching of the structure is more pronounced. The
breakdown appears to originate at the upstream part of the disturbance in a manner
similar to the breakdown of an isolated disturbance investigated by Henningson et al.
(1993), and as the disturbance moves downstream, the complexity of the flow field
influences the downstream portion of the disturbance. The increase in the streamwise
length of the spot is evident as the downstream portion propagates faster than the
upstream portion at speeds estimated as ≈ 0.74 and ≈ 0.38, respectively. These
velocities are deduced by extracting the streamwise locations of the leading and
trailing edges of the structure in the (x, z)-planes shown in figure 23 for each of
the instantaneous solutions. Note that the speed of the downstream part closely
corresponds to the local mean velocities in accordance with the development of the
transient part of an isolated three-dimensional disturbance, whereas the upstream
portion is moving at a velocity closer to the most unstable T-S wave (0.37) predicted
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Figure 23. Supercritical case: time evolution of streamwise velocity contours in the (x, z)-plane at
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by linear stability analysis for the Reynolds numbers used in this case. The wave
part of the disturbance can be briefly observed in the (x, y)-plane off the centreline
at z = 4π in v contours in figure 24 at t = 98.74 and t = 116.69. The position of the
wave part corresponds to the upstream portion of the disturbances shown in planview
in figures 23(a) and 23(b).

In comparison with the propagation velocities of fully developed turbulent spots in
the boundary layer, the disturbance obtained in the current computation travels at a
slower speed. Experimental studies cite leading- and trailing-edge velocities of 0.9 and
0.5, respectively (Riley & Gad-el-Hak 1985), independent of the Reynolds number.
Computations simulating boundary-layer turbulent spots (Henningson, Spalart &
Kim 1987) also obtained higher propagation rates of the leading and trailing portions
of a fully developed turbulent spot as well as a higher spanwise spreading rate of
0.065; the spanwise growth of the structure in the current study is estimated as
0.0275. In the studies of Henningson et al. (1987), the spot was generated by a
high-amplitude Gaussian impulse of height 1

3
δ introduced in the boundary layer. The

development of their disturbance in the initial stages also exhibited lower trailing-
and leading-edge propagation velocities than observed in the final stages when their
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Figure 24. Supercritical case: normal velocity contours indicating the wave part of the disturbance
in the (x, y)-plane at z = 4π. (a) t = 98.74 and (b) t = 116.69.

disturbance matured into a fully turbulent spot. In the current study, it is possible
that the disturbance will follow a similar route, ultimately evolving into a turbulent
spot. The shape of the disturbance is similar to the physical characteristics associated
with turbulent spots in the boundary layer, i.e. an arrow-shaped planform with the
apex pointing downstream and a ‘head’ which is stretched ahead of the spot creating
an overhang of fluid.

The lower spanwise spreading rate of the disturbance in comparison with the com-
putational studies of Henningson et al. (1987) is due to the shorter periodicity length
of the computational domain implemented in the current study. These computations
model the effect of an infinite array of spheres in the spanwise direction and the
interference of the wakes of the spheres attenuates the spreading of the disturbance.
This characteristic also influences the half-angle of the disturbance measured from
the symmetry line (φ = 7.3◦), which is smaller than half-angles (φ = 10◦) observed in
previous studies (Riley & Gad-el-Hak 1985; Henningson et al. 1987).

The experiments of Blackwelder et al. (1992) showed the production of a turbulent
spot when an isolated sphere entered the boundary layer. The sphere hits the wall and
then rolls along it creating a wake as the spot quickly moves ahead downstream. The
current results suggest that the turbulent spot observed by Blackwelder et al. (1992)
evolved from an isolated three-dimensional disturbance generated by the interaction
of the sphere and the boundary layer.

4.2.4. Turbulent wedge

The passage and breakdown of the isolated disturbance yields to the development
of an incipient turbulent wedge in the wake of the sphere. The appearance of the
turbulent wedge is in accordance with experimental results at supercritical Reynolds
numbers (Mochizuki 1961; Hall 1967; Vincent & Petrie 1993). The instantaneous
streamwise velocity contours presented in figure 25 clearly depict the top and side
views of the wedge at t = 215.4. The wedge forms a half-angle of 4◦–5◦ with the vertex
placed at the sphere measured from the centreline. Experiments have shown half-
angles of the the fully turbulent wedge ranging from 5◦–6.4◦ (Schubauer & Klebanoff
1955; Mochizuki 1961; Norman 1971).
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Figure 25. Supercritical case: instantaneous streamwise velocity contours at t = 215.4:
(a) the (x, z)-plane at y = 1.3 and (b) the (x, y)-plane at z = 2π.
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Figure 26. Supercritical case: streamwise distribution of (a) non-dimensional boundary layer dis-

placement thickness, δ
∗
, (b) momentum thickness, θ, and (c) skin friction coefficient, cf , downstream

of the sphere. , current solution; , laminar boundary layer solution; and · · · ,
turbulent boundary layer; empirical relations (4.7), (4.9).

4.2.5. Boundary layer characteristics

Figure 26 reveals the streamwise distribution downstream of the sphere of boundary-
layer displacement thickness, momentum thickness, and skin friction coefficient at
z = 2π. For comparison, the distributions corresponding to the Blasius (laminar)
solution and the empirical relations for turbulent boundary layers are included in
figure 26. The turbulent boundary layer relations for 105 6 Rex∗ 6 109 (White 1974)
are (in a non-dimensional form consistent with the current computation)

δ
∗ ≈ 0.018

Re
6/7
x∗

Reδ∗o
, (4.7)

θ ≈ 0.0142
Re

6/7
x∗

Reδ∗o
, (4.8)
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Figure 27. Supercritical case: normal profiles of streamwise mean velocity at every other
streamwise location downstream of the sphere at z = 2π. Each profile is offset by ∆u = 0.02.

and

cf ≈
0.455

ln2 0.06Rex∗
. (4.9)

Each of the distributions shows similar characteristics to those exhibited by the
subcritical case (figure 9) at streamwise locations near the sphere, i.e. an increase
and decrease in boundary layer displacement and momentum thickness, respectively,
resulting in a marked increase in shape factor, and a region of negative skin friction
coefficient corresponding to the wall separation bubble. Further downstream, the
distribution of displacement thickness (figure 26a) decreases and follows the laminar
case; in contrast, the momentum thickness (figure 26b) increases and approaches the
turbulent value. The Reynolds number based on the momentum thickness in the
turbulent wedge region varies from Reθ = 580 to 643. Far downstream, the combined

effects of δ
∗

and θ result in a decrease in the shape factor to ≈ 1.6, which is in
good agreement with results obtained in previous studies investigating low-Reynolds-
number turbulent boundary layers: at Reθ = 600, Purtell, Klebanoff & Buckley
(1981) measured H ≈ 1.58, and the computational study by Spalart (1988) yielded
H ≈ 1.5 for Reθ = 670, whereas the empirical formulas for H obtain a constant value
of 1.3. The skin friction coefficient increases from the laminar values, overshooting
the turbulent profile (figure 26c). The fluctuating nature of the quantities presented
in figure 26 indicates that the computation has not reached a statistically steady
turbulent state.

4.2.6. Velocity profiles

The streamwise development of the normal profiles of streamwise mean velocity at
z = 2π are presented in figures 27 and 28. We emphasize here that the mean velocity
in this case is not a true mean, since the flow field has not reached a quasi steady
state; rather we are examining the time average of the flow field computed over the
last portion of the simulation. The oscillations observed in the normal profiles near
the sphere for this case (figure 27) reflect one of the effects of the virtual boundary
method when it is applied with spectral methods. The virtual boundary acts as a
discontinuity in the spectral representation of the flow field, thus causing spatial
oscillations (Gibbs phenomenon). These oscillations remain at a fixed amplitude and
previous analysis (Saiki & Biringen 1996) has demonstrated that they do not affect
the solution.
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Figure 28. Supercritical case: comparison of streamwise mean velocity profiles at the centreline
of the turbulent wedge with experimental studies of turbulent boundary layers. (a) x = 53.85,
Reθ = 515, (b) x = 75.46, Reθ = 582.77, (c) x = 91.67, Reθ = 597.38, and (d) x = 102.5, Reθ = 643.4.
Experimental results from Purtell et al. (1981); 4, Reθ = 500 and �, Reθ = 700. The Blasius profile
is denoted by .

In a manner similar to the subcritical case, the profiles in the near vicinity of
the sphere reflect the appearance of the separation bubbles and exhibit an inflection
point at normal locations above the top of the sphere corresponding to the top
shear layer. The inflectional nature of the profiles is not as pronounced in this case
as it is in the lower-Reynolds-number case (figures 10 and 12); however, the top
shear layer is still clearly present (figure 27). In association with the motion of the
hairpin vortices, the shear layer is lifted upward higher than in the subcritical case.
Further downstream, the inflection points of the profiles also move upward and the
distributions begin to flatten near the wall, deviating considerably from the laminar
profiles. Comparison of the mean velocity with experimental studies of low-Reynolds-
number turbulent boundary layers (Purtell et al. 1981) provides evidence that the flow
field is approaching a turbulent state (figure 28).

The root-mean-square profiles for this case are presented in figure 29 where the
y-coordinate has been rescaled by the local boundary layer thickness, δ∗, in order
to compare the current results with those of previous studies. The profiles reveal
sharp maxima at the top of the sphere and in the hairpin vortex shedding region in
a manner similar to the subcritical case (figure 11). The maxima above the sphere
decrease in relative amplitude and move away from the wall as the heads of the
hairpin vortices rise upwards and the profiles become fuller. The r.m.s. distributions
further downstream (figure 29) continue to thicken in the normal direction and by the
last streamwise position shown, a second peak of amplitude 0.175 becomes dominant
(figure 29d). The maximum amplitude is comparable with maximum r.m.s. values
obtained by Acarlar & Smith (1987), Klebanoff et al. (1992), and Vincent & Petrie
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Figure 29. Supercritical case: comparison of streamwise root-mean-square velocity profiles at the
centreline of the turbulent wedge with experimental studies. The streamwise positions are the same
as in figure 28. Experimental results from Purtell et al. (1981): 4, Reθ = 700; and Klebanoff et
al. (1992); �, Reθ = 745. Note that the y-coordinate is non-dimensionalized by the local boundary
layer thickness, δ∗.

(1993). These profiles reveal a trend towards turbulence even though the distributions
reveal that a statistically steady turbulent state has not yet been reached. Figure 29
also compares four r.m.s. profiles from the current computation with the r.m.s. profiles
obtained by Purtell et al. (1981) in turbulent boundary layers and by Klebanoff et al.
(1992) in the turbulent wedge of a wake of a hemisphere in the boundary layer,
revealing their close similarity. These comparisons indicate that the computational
results are representative of low-Reynolds-number turbulent flows.

The spanwise distributions of mean streamwise velocities are presented in figure 30.
The mean profiles reflect the same behaviour observed in the subcritical case re-
lated to the rotational motion of the hairpin vortices with a velocity deficit at the
centreline, z = 2π, and two maxima surrounding the spanwise extent of the sphere
(figure 30a, b). Further downstream, the momentum deficit can be observed at higher
normal locations above the wall as the wake breaks down forming the turbulent
wedge (figure 30d).

5. Summary and conclusions
The focus of the current study was to numerically investigate the effects of a

spherical particle on boundary layer transition. It has long been recognized that
particles cause transition to turbulence in boundary layers, and several flow visual-
ization studies have established the characteristics of the sphere wake, defining sub-
and supercritical regimes. To further substantiate these previous studies we pursued
this problem with several goals: (i) to capture the sub- and supercritical behaviour
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Figure 30. Supercritical case: spanwise profiles of streamwise mean velocity at the same
streamwise and normal positions listed in figure 13.

of the sphere wake observed in experimental studies and (ii) to determine if three-
dimensional isolated disturbances associated with the linear lift-up mechanism are
characteristic of particle-induced transition in the boundary layer.

Simulations of an isolated three-dimensional disturbance represented by two
counter-rotating pairs of streamwise vortices of high amplitude were performed re-
peating the temporal work of Breuer & Landahl (1990) using a spatial computational
model. These calculations were completed in order to provide data for compari-
son with the sphere cases and to assess the normal mesh resolution requirements in
properly capturing the development of the disturbance, confirming the observations of
Henningson et al. (1993). As demonstrated by Breuer & Haritonidis (1990) and Breuer
& Landahl (1990), such disturbances are characterized by two parts: a transient part
and a wave part. The lift-up mechanism is associated with the transient part and is
activated by the three-dimensionality of the flow field and the presence of mean shear
while the wave part is associated with Tollmien–Schlichting wave behaviour (Breuer &
Haritonidis 1990). The growth and dominance of the transient part of the disturbance
can lead to transition to turbulence bypassing the T-S linear instability route.

The results from two sphere cases were examined: a subcritical case where hairpin
vortices are shed into the sphere wake and a supercritical case where a wedge of
incipient turbulence develops. The characteristics of the sphere wake were evaluated
and comparison with previous experimental results reveals good agreement. In both
the sub- and supercritical cases, the interaction of the sphere with the boundary
layer induces an isolated three-dimensional disturbance which develops in a two-
part manner similar to the evolution of disturbances outlined above; however, the
behaviour of the disturbance differs between the two cases.

In the subcritical case, the transient part decays as it is convected downstream,
while the wave part introduces a T-S wave into the flow field. The presence of the T-S
wave does not lead to transition to turbulence, rather the wave amplitude exhibits
a gradual decay after the wave part of the disturbance leaves the domain, while the
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hairpin vortices shed into the wake simply decay as they convect downstream. With
an increase in Reynolds number, the disturbance is dominated by the transient part,
and as it travels downstream it forms a structure similar to a turbulent spot. The
wave part developing at the rear portion of the spot is much weaker and the spot
breaks down to form a wedge of incipient turbulence in the wake. The shed hairpin
vortices also break down, feeding into the ‘turbulence’ in the wedge.

In summary, the above observations link three-dimensional disturbances to the
effects of spheres in the boundary layer. The Reynolds number affects the transient
part, dictating whether or not transition to turbulence occurs. In the low Reynolds
number case, viscosity dampens the amplitude of the transient part, while for the
high Reynolds number case the transient part grows to sufficiently high amplitude to
cause the disturbance to break down.

The current results correlate well with the experimental observations of Blackwelder
et al. (1992) and R. Blackwelder & P. Tanaguichi (personal communication) which
revealed that as a sphere enters the boundary layer, the sphere wake produces stream-
wise vortices which convect downstream forming a turbulent spot. The present study
offers an explanation for the mechanism behind the breakdown of the streamwise
vortices.
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The authors wish to thank program director James A. Fein for his continued interest
in this work. The authors also acknowledge the helpful comments of the anonymous
referees.
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